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1 Kernels

Motivation - the XOR problem: cannot be linearly separated in 2 dimensions, but can be in higher
dimensionality. Kernels can efficiently compute dot product in infinite dimensional space, without
actually transition the data to that space.

Definition 1.1 (Hilbert space). A Hilbert space is a complete space with inner product.

Definition 1.2 (Kernel). Let X be a non-empty set. A function k : X×X → R is called a kernel if there
exists a Hilbert space H and a map ϕ : X → H such that for all x, x′ ∈ X , k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H.

For example, X = R, ϕ(x) = x.

Definition 1.3 (Positive semi-definite functions). A symmetric function k : X × X → R is called
positive semi-definite (PSD) if for all x1, . . . , xn ∈ X and a1, . . . , an ∈ R,

n∑
i,j=1

aiajk(xi, xj) ≥ 0.

Lemma 1.4. Let X be a non-empty set, H be a Hilbert space and let k be a kernel function. Then k is
PSD.

Proof. Choose some x1, . . . , xn ∈ X and a1, . . . , an ∈ R. Then
n∑

i,j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

⟨aiϕ(xi), ajϕ(xj)⟩H

=

〈
n∑

i=1

aiϕ(xi),

n∑
j=1

ajϕ(xj)

〉
H

=

∥∥∥∥∥
n∑

i=1

aiϕ(xi)

∥∥∥∥∥
2

H

≥ 0.

The converse holds as well:

Lemma 1.5. A symmetric positive definite function is an inner product in some Hilbert space (and
thus a kernel)
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Proof. We first need to define H, its inner product, and ϕ, and then show that k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H.
We define H as the space of linear combinations of functions k(·, xi), i.e.,

H =

{
m∑
i=1

aik(·, xi), ai ∈ R, xi ∈ X ,m ∈ N

}
.

We then define the inner product as〈
mi∑
i=1

aik(·, xi),

mj∑
i=1

aik(·, xj)

〉
=

mi∑
i=1

mj∑
i=1

aiajk(xi, xj).

Note that since k is PSD, this inner product is valid.

Finally, we see that by defining ϕ(x) = k(·, x) we have k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H.

Lemma 1.6. Sum of kernels is a kernel.

Proof. By using Lemmas 1.4 and 1.5 we get

n∑
i,j=1

aiaj (k1(xi, xj) + k2(xi, xj)) =

n∑
i,j=1

aiajk1(xi, xj) +

n∑
i,j=1

aiajk2(xi, xj) ≥ 0.

Definition 1.7 (RBF kernel). The Radial Basis Function kernel (aka Gaussian kernel) is defined as

k(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
.

Lemma 1.8. The RBF kernel is a valid kernel

Proof. Let’s consider the map ϕ(x) = exp
(
−∥x−·∥2

σ2

)
, and let H be the space of square integrable

functions over R (i.e., L2), with the corresponding inner product. Then

⟨ϕ(x), ϕ(x′)⟩ =
〈
exp

(
−∥x− ·∥2

2σ2

)
, exp

(
−∥x′ − ·∥2

2σ2

)〉
=

∫ ∞

−∞
exp

(
−∥x− y∥2

2σ2

)
exp

(
−∥x′ − y∥2

2σ2

)
dy

=

√
πσ2

2
exp−∥x− x′∥2

2σ2
.

The scaling issue can be easily solved by re-scaling ϕ(x).

Observe that the RBF kernel is an inner product in an infinite dimensional space!
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2 Reproducing Kernel Hilbert Spaces

Definition 2.1 (RKHS). Let H be a Hilbert space of real-valued functions on X . A function k : X×X →
R is called a reproducing kernel of H, and H is called a reproducing kernel Hilbert space if k satisfies:

1. For every x ∈ X , k(·, x) ∈ H

2. The reproducing property: for every x ∈ X and f ∈ H, ⟨f, k(·, x)⟩H = f(x).

In particular, ⟨k(·, y), k(·, x)⟩H = k(x, y), hence a reproducing kernel is a valid kernel. ϕ(x) = k(·, x)
is often called the canonical feature map. The following theorem says the converse.

Theorem 2.2 (Moore-Aronszajn). Every symmetric, PSD kernel k : X × X → R defines a RKHS H,
for which k is the reproducing kernel.

Proof. Define H0 = span{ϕ(x) : x ∈ X}, with the inner product〈
n∑

i=1

aiϕ(xi),

m∑
j=1

ajϕ(xj)

〉
H0

=

n∑
i=1

m∑
j=1

aiajk(xi, xj),

hence ⟨ϕ(x), ϕ(y)⟩H0 = k(x, y). To make H0 a Hilbert space, we need to consider its completion H,
which is composed of elements of the form f =

∑∞
i=1 aiϕ(xi), where the sum converges. We can now

verify the reproducing property holds:

⟨f, ϕ(x)⟩H0
=

∞∑
i=1

ai⟨ϕ(xi), ϕ(x)⟩ =
∞∑
i=1

aik(xi, x) = f(x).

It remains to show that H is unique. Let G be an RKHS for which k is a reproducing kernel. Then for
every x, y ∈ X , ⟨ϕ(x), ϕ(y)⟩H = k(x, y) = ⟨ϕ(x), ϕ(y)⟩G . Hence, by linearity, the inner products in H
and G equal on span{ϕ(x) : x ∈ X}. Then H ⊆ G, since G is complete and contains H0. We will show
that G ⊆ H. Let f ∈ G and write f = fH + fH⊥ , where fH ∈ H and fH⊥ ∈ H⊥. Then

f(x) = ⟨ϕ(x), f⟩G = ⟨ϕ(x), fH⟩+ ⟨ϕ(x), fH⊥⟩ = ⟨ϕ(x), f)H = fH(x),

since ϕ(x) ∈ H, so ⟨ϕ(x), fH⊥⟩ = 0. Then f ∈ H and hence H = G, which concludes the proof.

The representer theorem shows that the minimizer of the empirical risk (i.e., train loss) over an
RKHS can be obtained as a linear combination of feature maps of training points. This is a significant
result, as it simplifies the search for optimal solutions to a linear program.

Theorem 2.3 (Representer thm). Let k be a kernel function and H be the corresponding RKHS. We are
provided with training data (x1, y1), . . . (xn, yn), an error function E : R2 → R and a strictly increasing
regularizer function g : [0,∞) → R. Let f∗ be a minimizer of the regularized empirical risk, i.e.,

f∗ = argmin
f

(E(f(x1), y1), . . . , E(f(xn), yn)) + g(∥f∥).

Then f∗ =
∑n

i=1 aiϕ(xi), for some ai’s.
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Proof. We decompose every function f ∈ H to a component in span{ϕ(x1), . . . , ϕ(xn)} and an orthogonal
component: f =

∑n
i=1 aiϕ(xi) + v, where ⟨ϕ(xi), v⟩ = 0 for all i = 1, . . . , n. Then by the reproducing

property,

f(xj) =

〈
n∑

i=1

aiϕ(xi) + v, ϕ(xj)

〉
=

n∑
i=1

aik(xi, xj).

Hence the values of f on the training data do not depend on v, and consequently the errors E(f(xi), yi).
Finally, considering the regularization term,

g(∥f∥) = g

(∥∥∥∥∥
n∑

i=1

aiϕ(xi) + v

∥∥∥∥∥
)

= g


√√√√∥∥∥∥∥

n∑
i=1

aiϕ(xi)

∥∥∥∥∥
2

+ ∥v∥2


≥ g

(∥∥∥∥∥
n∑

i=1

aiϕ(xi)

∥∥∥∥∥
)
,

where we have used orthogonality and the fact that g is increasing. Therefore v = 0 does not affect the
training error and strictly reduces the regularization penalty. Therefore v = 0, so f∗ =

∑n
i=1 aiϕ(xi).

3 Application: kernel ridge regression

Given train data (xi, yi) i = 1, . . . n, we assume a model y = f(x) + ϵ, and seek for f∗ such that
yi = f∗(xi) + ϵi for all i. Let H be a RKHS with kernel k. Since f can be arbitrarily expressive, we
need to regularize it. The optimization is therefore

argmin
f∈H

n∑
i=1

((yi)− f(xi))
2 +

λ

2
∥f∥2H.

By the representer theorem, we know that f =
∑n

j=1 ajϕ(xj), for some a = (a1, . . . , an)
T , where

ϕ(xi) = k(·, xi). In vector notation, we define y = (y1, . . . , yn)
T , and the kernel matrix K, such that

kij = k(xi, xj). Then the miminization problem becomes

argmin
a

∥y −Ka∥2 ++
λ

2
aTKa.

Taking gradient wrt a, using the fact that K is symmetric, and equating to zero, we get

K2a−Ky + λKa = 0.

Rearranging, we get
K(K + λI)a = Ky.

Assuming k is PD, and multiplying from the left by K−1, we get

â = (K + λI)−1y.
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For prediction at a new test point x we then have

ŷ(x) = aTϕ(xi)(x) =

n∑
i=1

aik(xi, x) = yT (K + λI)−1k(x)

where k(x) = (k(x, x1), . . . , k(x, xn))
T .
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