Reproducing Kernel Hilbert Spaces

Uri Shaham

March 4, 2024

1 Kernels

Motivation - the XOR problem: cannot be linearly separated in 2 dimensions, but can be in higher dimensionality. Kernels can efficiently compute dot product in infinite dimensional space, without actually transition the data to that space.

Definition 1.1 (Hilbert space). A Hilbert space is a complete space with inner product.
Definition 1.2 (Kernel). Let \mathcal{X} be a non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called a kernel if there exists a Hilbert space \mathcal{H} and a map $\phi: \mathcal{X} \rightarrow \mathcal{H}$ such that for all $x, x^{\prime} \in \mathcal{X}, k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$.

For example, $\mathcal{X}=\mathbb{R}, \phi(x)=x$.
Definition 1.3 (Positive semi-definite functions). A symmetric function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called positive semi-definite $(P S D)$ if for all $x_{1}, \ldots, x_{n} \in \mathcal{X}$ and $a_{1}, \ldots, a_{n} \in \mathbb{R}$,

$$
\sum_{i, j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

Lemma 1.4. Let \mathcal{X} be a non-empty set, \mathcal{H} be a Hilbert space and let k be a kernel function. Then k is $P S D$.

Proof. Choose some $x_{1}, \ldots, x_{n} \in \mathcal{X}$ and $a_{1}, \ldots, a_{n} \in \mathbb{R}$. Then

$$
\begin{aligned}
\sum_{i, j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle a_{i} \phi\left(x_{i}\right), a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right), \sum_{j=1}^{n} a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} \\
& =\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)\right\|_{\mathcal{H}}^{2} \geq 0
\end{aligned}
$$

The converse holds as well:
Lemma 1.5. A symmetric positive definite function is an inner product in some Hilbert space (and thus a kernel)

Proof. We first need to define \mathcal{H}, its inner product, and ϕ, and then show that $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$. We define \mathcal{H} as the space of linear combinations of functions $k\left(\cdot, x_{i}\right)$, i.e.,

$$
\mathcal{H}=\left\{\sum_{i=1}^{m} a_{i} k\left(\cdot, x_{i}\right), a_{i} \in \mathbb{R}, x_{i} \in \mathcal{X}, m \in \mathbb{N}\right\}
$$

We then define the inner product as

$$
\left\langle\sum_{i=1}^{m_{i}} a_{i} k\left(\cdot, x_{i}\right), \sum_{i=1}^{m_{j}} a_{i} k\left(\cdot, x_{j}\right)\right\rangle=\sum_{i=1}^{m_{i}} \sum_{i=1}^{m_{j}} a_{i} a_{j} k\left(x_{i}, x_{j}\right) .
$$

Note that since k is PSD, this inner product is valid.
Finally, we see that by defining $\phi(x)=k(\cdot, x)$ we have $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$.
Lemma 1.6. Sum of kernels is a kernel.
Proof. By using Lemmas 1.4 and 1.5 we get

$$
\sum_{i, j=1}^{n} a_{i} a_{j}\left(k_{1}\left(x_{i}, x_{j}\right)+k_{2}\left(x_{i}, x_{j}\right)\right)=\sum_{i, j=1}^{n} a_{i} a_{j} k_{1}\left(x_{i}, x_{j}\right)+\sum_{i, j=1}^{n} a_{i} a_{j} k_{2}\left(x_{i}, x_{j}\right) \geq 0
$$

Definition 1.7 (RBF kernel). The Radial Basis Function kernel (aka Gaussian kernel) is defined as

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)
$$

Lemma 1.8. The RBF kernel is a valid kernel
Proof. Let's consider the map $\phi(x)=\exp \left(-\frac{\|x-\cdot\|^{2}}{\sigma^{2}}\right)$, and let \mathcal{H} be the space of square integrable functions over \mathbb{R} (i.e., L^{2}), with the corresponding inner product. Then

$$
\begin{aligned}
\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle & =\left\langle\exp \left(-\frac{\|x-\cdot\|^{2}}{2 \sigma^{2}}\right), \exp \left(-\frac{\left\|x^{\prime}-\cdot\right\|^{2}}{2 \sigma^{2}}\right)\right\rangle \\
& =\int_{-\infty}^{\infty} \exp \left(-\frac{\|x-y\|^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{\left\|x^{\prime}-y\right\|^{2}}{2 \sigma^{2}}\right) d y \\
& =\sqrt{\frac{\pi \sigma^{2}}{2}} \exp -\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}
\end{aligned}
$$

The scaling issue can be easily solved by re-scaling $\phi(x)$.
Observe that the RBF kernel is an inner product in an infinite dimensional space!

2 Reproducing Kernel Hilbert Spaces

Definition 2.1 (RKHS). Let \mathcal{H} be a Hilbert space of real-valued functions on \mathcal{X}. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow$ \mathbb{R} is called a reproducing kernel of \mathcal{H}, and \mathcal{H} is called a reproducing kernel Hilbert space if k satisfies:

1. For every $x \in \mathcal{X}, k(\cdot, x) \in \mathcal{H}$
2. The reproducing property: for every $x \in \mathcal{X}$ and $f \in \mathcal{H},\langle f, k(\cdot, x)\rangle_{\mathcal{H}}=f(x)$.

In particular, $\langle k(\cdot, y), k(\cdot, x)\rangle_{\mathcal{H}}=k(x, y)$, hence a reproducing kernel is a valid kernel. $\phi(x)=k(\cdot, x)$ is often called the canonical feature map. The following theorem says the converse.

Theorem 2.2 (Moore-Aronszajn). Every symmetric, PSD kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ defines a $R K H S \mathcal{H}$, for which k is the reproducing kernel.

Proof. Define $\mathcal{H}_{0}=\operatorname{span}\{\phi(x): x \in \mathcal{X}\}$, with the inner product

$$
\left\langle\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right), \sum_{j=1}^{m} a_{j} \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}_{0}}=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} a_{j} k\left(x_{i}, x_{j}\right),
$$

hence $\langle\phi(x), \phi(y)\rangle_{\mathcal{H} 0}=k(x, y)$. To make \mathcal{H}_{0} a Hilbert space, we need to consider its completion \mathcal{H}, which is composed of elements of the form $f=\sum_{i=1}^{\infty} a_{i} \phi\left(x_{i}\right)$, where the sum converges. We can now verify the reproducing property holds:

$$
\langle f, \phi(x)\rangle_{\mathcal{H}_{0}}=\sum_{i=1}^{\infty} a_{i}\left\langle\phi\left(x_{i}\right), \phi(x)\right\rangle=\sum_{i=1}^{\infty} a_{i} k\left(x_{i}, x\right)=f(x) .
$$

It remains to show that \mathcal{H} is unique. Let \mathcal{G} be an RKHS for which k is a reproducing kernel. Then for every $x, y \in \mathcal{X},\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}=k(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{G}}$. Hence, by linearity, the inner products in \mathcal{H} and \mathcal{G} equal on $\operatorname{span}\{\phi(x): x \in \mathcal{X}\}$. Then $\mathcal{H} \subseteq \mathcal{G}$, since G is complete and contains \mathcal{H}_{0}. We will show that $\mathcal{G} \subseteq \mathcal{H}$. Let $f \in \mathcal{G}$ and write $f=f_{\mathcal{H}}+f_{\mathcal{H}^{\perp}}$, where $f_{\mathcal{H}} \in \mathcal{H}$ and $f_{\mathcal{H}^{\perp}} \in \mathcal{H}^{\perp}$. Then

$$
f(x)=\langle\phi(x), f\rangle_{\mathcal{G}}=\left\langle\phi(x), f_{\mathcal{H}}\right\rangle+\left\langle\phi(x), f_{\mathcal{H}^{\perp}}\right\rangle=\langle\phi(x), f)_{\mathcal{H}}=f_{\mathcal{H}}(x),
$$

since $\phi(x) \in \mathcal{H}$, so $\left\langle\phi(x), f_{\mathcal{H}^{\perp}}\right\rangle=0$. Then $f \in \mathcal{H}$ and hence $\mathcal{H}=\mathcal{G}$, which concludes the proof.

The representer theorem shows that the minimizer of the empirical risk (i.e., train loss) over an RKHS can be obtained as a linear combination of feature maps of training points. This is a significant result, as it simplifies the search for optimal solutions to a linear program.

Theorem 2.3 (Representer thm). Let k be a kernel function and \mathcal{H} be the corresponding RKHS. We are provided with training data $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$, an error function $E: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and a strictly increasing regularizer function $g:[0, \infty) \rightarrow \mathbb{R}$. Let f^{*} be a minimizer of the regularized empirical risk, i.e.,

$$
f^{*}=\arg \min _{f}\left(E\left(f\left(x_{1}\right), y_{1}\right), \ldots, E\left(f\left(x_{n}\right), y_{n}\right)\right)+g(\|f\|)
$$

Then $f^{*}=\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)$, for some a_{i} 's.

Proof. We decompose every function $f \in \mathcal{H}$ to a component in $\operatorname{span}\left\{\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right\}$ and an orthogonal component: $f=\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)+v$, where $\left\langle\phi\left(x_{i}\right), v\right\rangle=0$ for all $i=1, \ldots, n$. Then by the reproducing property,

$$
f\left(x_{j}\right)=\left\langle\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)+v, \phi\left(x_{j}\right)\right\rangle=\sum_{i=1}^{n} a_{i} k\left(x_{i}, x_{j}\right)
$$

Hence the values of f on the training data do not depend on v, and consequently the errors $E\left(f\left(x_{i}\right), y_{i}\right)$. Finally, considering the regularization term,

$$
\begin{aligned}
g(\|f\|) & =g\left(\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)+v\right\|\right) \\
& =g\left(\sqrt{\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)\right\|^{2}+\|v\|^{2}}\right) \\
& \geq g\left(\left\|\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)\right\|\right)
\end{aligned}
$$

where we have used orthogonality and the fact that g is increasing. Therefore $v=0$ does not affect the training error and strictly reduces the regularization penalty. Therefore $v=0$, so $f^{*}=\sum_{i=1}^{n} a_{i} \phi\left(x_{i}\right)$.

3 Application: kernel ridge regression

Given train data $\left(x_{i}, y_{i}\right) i=1, \ldots n$, we assume a model $y=f(x)+\epsilon$, and seek for f^{*} such that $y_{i}=f^{*}\left(x_{i}\right)+\epsilon_{i}$ for all i. Let \mathcal{H} be a RKHS with kernel k. Since f can be arbitrarily expressive, we need to regularize it. The optimization is therefore

$$
\arg \min _{f \in \mathbb{H}} \sum_{i=1}^{n}\left(\left(y_{i}\right)-f\left(x_{i}\right)\right)^{2}+\frac{\lambda}{2}\|f\|_{\mathcal{H}}^{2} .
$$

By the representer theorem, we know that $f=\sum_{j=1}^{n} a_{j} \phi\left(x_{j}\right)$, for some $a=\left(a_{1}, \ldots, a_{n}\right)^{T}$, where $\phi\left(x_{i}\right)=k\left(\cdot, x_{i}\right)$. In vector notation, we define $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$, and the kernel matrix K, such that $k_{i j}=k\left(x_{i}, x_{j}\right)$. Then the miminization problem becomes

$$
\arg \min _{a}\|y-K a\|^{2}++\frac{\lambda}{2} a^{T} K a
$$

Taking gradient wrt a, using the fact that K is symmetric, and equating to zero, we get

$$
K^{2} a-K y+\lambda K a=0
$$

Rearranging, we get

$$
K(K+\lambda I) a=K y
$$

Assuming k is PD , and multiplying from the left by K^{-1}, we get

$$
\hat{a}=(K+\lambda I)^{-1} y
$$

For prediction at a new test point x we then have

$$
\hat{y}(x)=a^{T} \phi\left(x_{i}\right)(x)=\sum_{i=1}^{n} a_{i} k\left(x_{i}, x\right)=y^{T}(K+\lambda I)^{-1} k(x)
$$

where $k(x)=\left(k\left(x, x_{1}\right), \ldots, k\left(x, x_{n}\right)\right)^{T}$.

